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ARTICLE INFO ABSTRACT

Breed registries have been established for livestock species to maintain the purity of breeds and to document the
ancestry of animals. However, a significant number of animals are unregistered with no or incomplete pedigree
data and uncertain ancestral breed origin. Although many local livestock breeds are “at risk” on the basis of the
number of purebred breeding females in a breed registry, there is often also a reservoir of unregistered animals
that may belong to the same breed. However, due to the missing pedigree it is not possible for breed societies or
herd books to include those animals in their breeding program for purebred animals. A genetic test was de-
veloped to unequivocally determine the breed origin of cattle without pedigree data. Such a test will open up the
possibility to incorporate animals without pedigree data in the breed registry that turn out to be purebred based
on the test results. In this study we developed and validated such a test. Genotype data (50k SNP array) were
used to compose reference populations for six local Dutch cattle breeds. The combination Principal Component
Analysis and Random Forest was used to perform SNP selection. A total of 133 informative SNPs were selected to
determine breed composition of individual animals. Overall, 82.0% of the animals in the test population are
correctly assigned to the breed in question. For Dutch Red and White Friesian and Deep Red Cattle we suggest
that if an animal has a percentage for its own breed < 0.775 to use the combined percentage of two breeds (Deep
Red Cattle with Meuse-Rhine-Yssel and Dutch Red and White Friesian with Dutch Friesian). Using this criteria
88.9% (104 out of 117) of the animals in the test population is correctly assigned.

The developed test was successful and will be implemented in practice to identify (partly) unregistered in-
dividuals as being purebred (or not) for one of the Dutch local cattle breeds.
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1. Introduction

Modern livestock production is dominated by global use of highly
productive breeds, while many local breeds have become endangered.
Nowadays, most of these local farm animal breeds are at risk of ex-
tinction on the basis of their small (effective) population sizes (www.
fao.org/dad-is). Moreover, in numerically small populations inbreeding
can increase rapidly and consequently genetic variation will be eroded.
Breed registries have been established to maintain the purity of breeds
and to document the ancestry of breeding animals, and to enable breed
specific breeding programs. However, there is also a significant number
of unregistered animals that have no or incomplete pedigree or ances-
tral breed composition data.

According to Regulation (EU) 2016/1012 on Animal Breeding (EU,
2016b) this potential “reservoir” of animals without pedigree data

cannot enter the main section of the herd book. However, with re-
ference to article 19 of the Regulation, Member States can decide to
implement a specific derogation for the conservation or reconstruction
of endangered breeds. Furthermore, in the event of disease outbreaks
that could threaten the survival of local breeds, derogations are also
allowed on the basis of the EU animal health legislation (EU, 2016a). It
allows competent authorities to take specific measures to protect
purebred animals of local breeds.

Traditionally, the determination of purebred animals is derived
from pedigree information. When pedigree information is lacking, al-
ternatively, molecular markers can be used to estimate breed purity. In
several livestock species including cattle, tens of thousands of Single
Nucleotide Polymorphisms (SNP) markers located across the whole
genome are available (Matukumalli et al., 2009). The availability of
genotypes of these SNPs allows estimation of breed composition of
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individual animals using genomic data (Manel et al., 2005; Kuehn et al.,
2011; Frkonja et al., 2012; Hulsegge et al., 2013).

On the basis of established methods it is possible to estimate breed
composition and purity and to allow incorporating purebred animals in
the breed registry for purebred animals.

A purity test requires genotypes of reference individuals whose
breed of origin is known, a so called reference population. The in-
dividuals in a reference population should match the full range of ge-
netic diversity within a particular breed. Based on these reference in-
dividuals, SNP markers can be selected, which contain sufficient genetic
information to be able to discriminate amongst the breeds. Preferably
the number of SNP markers should be limited, in order to simplify the
test, to reduce the costs and to speed up computations. The information
of the selected SNPs from the reference populations subsequently could
be used to infer the ancestry of individuals with unknown origin. For a
purity test it is necessary to draw a threshold value for which an allo-
cation of an unknown individual to a breed is accepted.

For implementing the methodology in practice a rapid and reliable
method for genetic purity testing of animals is needed, distinguishing
crossbred animals from purebred animals and to determine the breed
composition. Furthermore, there is genetic variation within breeds and
consequently a breed purity test will depend on how well this genetic
variation will be reflected in the reference populations dataset. Finally,
some introgression of genes of other breeds is generally accepted, e.g.
animals registered with 87.5% pedigree purity are generally considered
purebred, so the challenge is to determine a threshold value for purity
that is generally accepted.

The general aim of this study was to set up an easy applicable,
highly accurate and affordable breed composition and purity test for the
purpose of breed purity determination where pedigree is unknown or
unable to verify with traditional methods. The specific objectives of this
study were to: (1) build reference populations with individuals whose
breed of origin is known; (2) select SNP markers that contain sufficient
genetic information to be able to discriminate amongst the cattle
breeds, (3) demonstrate the effectiveness of the test and (4) validate the
test.

2. Materials and methods
2.1. Animals and genotypes

Six local cattle breeds in the Netherlands were incorporated in the
purity test: Deep Red Cattle, Dutch Belted, Dutch Friesian, Dutch Red
and White Friesian, Groningen White Headed and Meuse-Rhine-Yssel.
Genotype data for these local breeds were available from former studies
(Maurice-Van Eijndhoven et al., 2015; Frangois et al., 2017; Hulsegge
et al.,, 2017; Manzanilla-Pech et al., 2017) and the recently available
genotype data from bulls in the Dutch genebank, born between 1960
and 2015. Data on the six local breeds were provided by the Centre for
Genetic Resources, The Netherlands (CGN). Individuals were genotyped
with the Illumina BovineSNP50 or BovineHD Beadchip. The dataset
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includes data from bulls in the Dutch genebank collection, suggesting
they would include the genetic variation present in the population
(Berg and Windig, 2017). The cows were selected from several farms for
each breed. As the local breeds are sometimes crossed with Holstein
Friesians, we included genotype data of a small group of Holstein
Friesian animals as an outgroup to the dataset with the local cattle
breeds. Data of Holstein Friesians were from cows of the Dairy Campus
Research dairy herd (Wageningen University & Research, Wageningen
Livestock Research, Lelystad, The Netherlands). Previously performed
editing and imputation steps of these data are described by Manzanilla-
Pech et al. (2017). After combining the different genotype datasets a
total of 36,148 SNPs remained for a total of 1850 animals with pedigree
breed percentage > 87.5% (8/8 breed fraction).

2.2. Quality control

Prior to the analysis, several quality control measures were applied
to the genotype data. The dataset was pruned by excluding SNPs and
animals with a call rate < 90%. Missing genotypes were imputed using
Beagle with 20 iterations (Browning and Browning, 2008). Imputation
was carried out for each breed and chromosome independently, except
for the Holstein Friesian samples which were already imputated. Rare
alleles were not excluded, because these are important for the differ-
entiation between breeds (Bertolini et al., 2015). SNPs were pruned for
Linkage Disequilibrium (LD, threshold: > 0.2) with the SNP Relate
(version 1.12.2) package in R (Zheng et al., 2012). After quality control,
a total of 10,449 SNPs and 1774 purebred animals remained for the
analysis.

2.3. Reference and test population

Each cattle breed was divided into a reference population and a test
population. The test population was generated by randomly sampling
10% of the animals within each breed with a maximum of n = 20. The
test population included 4 Deep Red Cattle, 4 Dutch Belted, 5 Dutch
Red and White Friesian, 20 Dutch Friesian, 12 Groningen White Headed
and 20 Meuse-Rhine-Yssel (Table 1). The remaining animals formed the
reference population (Table 1). The test population was supplemented
with 59 crossbred animals with known breed composition, 29 purebred-
and 9 crossbred animals of other breeds (20 Improved Red Cattle, 8
Lineback Cattle and 1 Belgian Red Cattle) (Table 1).

The difference in number of samples per breed could bias the ana-
lysis. Therefore, we performed the analysis using a maximum of 150
randomly selected animals per breed. We included genotype data of a
small group of Holstein Friesian animals as an outgroup to the dataset
with the local cattle breeds (test population n = 19; reference popula-
tion n = 50). The final reference population included a total of 572
purebred animals (36 Deep Red Cattle, 32 Dutch Belted, 43 Dutch Red
and White Friesian, 150 Dutch Friesian, 111 Groningen White Headed,
150 Meuse-Rhine-Yssel and 50 Holstein Friesian (Table 1).

Number of animals per breed in the reference population (REF) and test population (TEST). Reference is the population used to develop the breed composition and
purity test, test population are animals with known breed composition used to validate the developed test.

Breed Name REF TEST population by breed percentage (12.5%)
> 87.5% > 75% > 62.5% 50% > 37.5%

Deep Red Cattle 36 4 0 0 1 1
Dutch Belted 32 4 1 0 0 0
Dutch Friesian 150 20 4 1 0 1
Dutch Red and White Friesian 43 5 0 1 0 2
Groningen White Headed 111 12 13 6 1 4
Meuse-Rhine-Yssel 150 20 14 1 0 2
Holstein Friesian 50 19 1 4 0 1
Other breed 29 5 1 0 3
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2.4. Selection of informative SNPs

A combined approach of Principal Component Analysis (PCA) and
Random Forest (RF) (Bertolini et al., 2015) was used to determine
which SNPs contained the most information to discriminate among
breeds. PCA was performed using the prcomp function in R (R Core
Team, 2016). The first two principal components (PC1 and PC2) were
used to reduce the number of SNPs needed to discriminate between
breeds. The contribution of each SNP to PC1 and PC2 was estimated
using the function get_pca_var incorporated in the factoextra package
(version 1.0.5) in R (Kassambara, 2017). The contribution of each SNP
to each of the PCs was ranked and the 500 SNPs with highest con-
tribution were selected, leading to 1000 selected SNPs. After removing
duplicates, 976 SNPs remained. Random Forests based on the selected
976 SNPs were built using the Random Forests (RF, version 4.6 12) R
package (Liaw and Wiener, 2002), where the number of trees was set to
ntree = 10,000 and the number of candidate predictors considered at
each split to mtry = 500. The classification confusion matrix, an error
matrix, as well as the out-of-bag error (OOB), the estimated prediction
error, were used to evaluate the quality of classification. It has been
shown that the Mean Decrease in Gini Index (MDGI), a relevance
measures, is most likely to promote SNPs with high minor allele fre-
quencies (Boulesteix et al., 2012), which was found to be beneficial in a
similar study investigating the selection of informative SNPs to differ-
entiate four cattle breeds (Bertolini et al., 2015). Based on the ranked
MDGI score of the SNPs the 100 most informative SNPs were selected.

2.5. Clustering animals

The model-based clustering method implemented in the program
STRUCTURE (version 2.3.4) (Pritchard et al., 2000) was used to infer
the most probable number of genetically distinct clusters present in the
reference population and to estimate admixture proportions within
each of those clusters. The software clustered the data according to
allele frequencies into K populations (clusters). The admixture model,
correlated allele frequencies (Falush et al., 2003) and the number of
populations K = 6 to 8 were used for the STRUCTURE analyses, a total
of 200,000 Markov chain Monte Carlo (MCMC) iterations were run,
with a burn-in period of 100,000 iterations. The seed was set at 1234.
Results of clustering based on higher and lower numbers of clusters (K)
confirmed that seven clusters were the best fit to the data at hand.

2.6. Validation

Predicting individual breed composition and purity of the test po-
pulation based on the 133 informative SNPs was calculated using the
program STRUCTURE (version 2.3.4) (Pritchard et al., 2000; Porras-
Hurtado et al., 2013). The data of the test population was treated as
having unknown affinity and the program assigned the test individuals
to the seven genetic clusters from the reference population. The USE-
POPINFO model was used, whereby the reference populations were
used to estimate the ancestry of the test population with unknown
origin. Clustering and allele frequencies were updated using only in-
dividuals from the reference populations (POPFLAG=1) so that in-
dividuals from the test population were forced to cluster with one or
more of the reference population clusters. Based on preliminary ana-
lysis (data not shown), the GENSBACK (“generations back” infers only
whether an individual itself is a migrant) was set to 1 and the prior on
migration rate (MIGRPRIOR) to 0.01. Again, a total of 200,000 MCMC
iterations were run, with a burn-in period of 100.000 iterations. STR-
UCTURE assigned each individual to the inferred clusters based on the
individual proportion of membership (Q-value) and its confidence in-
terval (90% CI). In order to distinguish purebreds from crossbreds a
threshold value needed to be set. The threshold value was set based on
achieving an optimal balance between false positives (a crossbred an-
imal assigned as purebred) and false negatives (a purebred animal
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assigned as crossbred). Therefore the proportion of membership of the
purebred animals (= 87.5%; 7/8 and 8/8) of the test population was
determined and subsequently the proportion of membership of the
crossbred animals (that must be excluded). The set threshold, as best as
possible, assigned the purebred animals but excluded the crossbred
animals.

3. Results
3.1. Selection of informative SNPs

The first three PCs separated the 572 individual animals from the
reference population according to their breed (Fig. 1). PC1 accounted
for 6.3% of the total variation and separated the Dutch Friesian breeds
(Dutch Red and White Friesian and Dutch Friesian) on the one hand and
Groningen White Headed on the other hand from Holstein Friesian,
Meuse-Rhine-Yssel and Deep Red Cattle. PC2 (5.5%) separated Meuse-
Rhine-Yssel and Deep Red Cattle on the one hand and the Dutch Frie-
sian breeds and Groningen White Headed on the other hand from Dutch
Belted and Holstein Friesian, while PC3 distinguished all local breeds
from Holstein Friesian. A partial overlap between Dutch Friesian and
Dutch Red and White Friesian as well as between Meuse-Rhine-Yssel
and Deep Red Cattle was observed as expected based on their history.

Assigning the reference population animals to breeds rendered too
many misclassifications when based on RF and 976 SNPs (Table 2).
Therefore, a second selection step was performed to render a more (and
reduced) informative set of SNPs. Based on the ranked MDGI score of
the SNPs the 100 most informative SNPs were selected.

To improve the assignments of the closely related breeds (Dutch
Friesian and Dutch Red and White Friesian, as well as Meuse-Rhine-
Yssel and Deep Red Cattle), additional SNPs were selected. For both
comparisons, the 20 SNPs with the highest differences in allele fre-
quency between the two breeds were selected. These 40 SNPs and the
100 most informative SNPs selected with RF were combined. After re-
moval of duplicates 133 SNPs remained. This set of 133 SNPs resulted
in less misclassification as the error rate reduced from 6.3% when using
976 SNPs to 4.4%. However, the error rate within some breeds was still
unacceptably high (Table 2) when keeping in mind an application in
practice. We therefore considered breed assignment using the STRUC-
TURE program in which for each animal proportions of membership to
each of the seven clusters (that is, breeds) was provided.

Fig. 2 shows the distribution of the 133 SNPs over the different
chromosomes. SNP name, chromosome and location of the SNPs is
available in Suppl. Table 1. The selected 133 informative SNPs were
located across all chromosomes, where the number of SNPs per chro-
mosome ranged from one to 12.

3.2. Breed assignment

The STRUCTURE analysis (K = 6 to 8) using the 572 animals in the
reference population showed the lowest cross/validation error at K = 7
and confirmed the presence of seven breeds. The purebred animals of
the Dutch Friesian, Groningen White Headed, Dutch Belted, Meuse-
Rhine-Yssel and Holstein-Friesian breeds within the reference popula-
tion showed large proportion of membership in one of the inferred
clusters (mean proportion of membership was > 0.9; Table 3). These
animals were therefore correctly assigned to their breed of origin.
However, this did not hold for the purebred animals of the Dutch Red
and White Friesian and Deep Red Cattle breeds within the reference
population. Mean proportion of membership of purebred Dutch Red
and White Friesian animals to inferred cluster 5, the cluster re-
presenting this breed, was 0.731 (Table 3). A considerable average
proportion of membership (0.227; Table 3) was also assigned to in-
ferred cluster 2, the Dutch Friesian breed. Similarly, the average pro-
portion of membership of purebred Deep Red Cattle animals to inferred
cluster 6, the cluster representing this breed, was 0.894 (Table 3). The
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Fig. 1. PCA results visualizing individuals of various breeds within the reference population using 10,449 SNPS, with the percentage of variance explained in

brackets.

Table 2

Assignment of reference population animals to breeds based on Random Forest classification using 976 and 133 SNPs.

RF classificatie 976 SNPs

RF classification 133 SNPs

Breed DRF DF GWH DB DRC MRY HOL Error rate DRF DF GWH DB DRC MRY HOL Error rate
DRF 25 16 1 1 0.419 29 13 1 0.325
DF 1 149 0.007 150 0.000
GWH 111 0.000 111 0.000
DB 1 29 1 1 0.094 1 30 1 0.063
DRC 1 20 15 0.444 29 7 0.194
MRY 1 149 0.007 1 1 148 0.013
HOL 50 0.000 50 0.000

*DRC = Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian, DRF = Dutch Red and White Friesian, GWH = Groningen White Headed, MRY = Meuse-Rhine-

Yssel and HOL = Holstein Friesian.

second largest average proportion of membership for the purebred
Deep Red Cattle animals was 0.044 to inferred cluster 3, the Meuse-
Rhine-Yssel breed.

3.3. Assignment testing

In general, animals from the test population showed a high pro-
portion of membership to the same cluster as the reference population
representatives of the same breed (Supp. Table 2). Average proportion
of membership of the animals in the test population ranged from 0.687
for the Dutch Red and White Friesian to 0.929 for the Groningen White
Headed (Fig. 3). The 90% probability interval of the purebred test
population of Groningen White Headed was smaller than that of the
other breeds, suggesting that the genetic diversity within Groningen
White Headed (or at least within this data set) is lower than within the
other breeds and/or Groningen White Headed has more unique alleles
compared to the other breeds.

A low proportion of membership to their breed of origin was ob-
served for several test animals (Fig. 3). For example, proportion of
membership of one Dutch Red and White Friesian animal was 0.251.
For this particular animal a higher proportion of membership was ob-
served for the Dutch Friesian breed (0.627), which could be explained
by its ancestors (mostly from Dutch Friesian).

The threshold value for which an allocation of an unknown
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individual to a breed is accepted was set to 0.775 (proportion of
membership). The threshold value was set based on achieving an op-
timal balance between false positives (a crossbred animal assigned as
purebred) and false negatives (a purebred animal assigned as
crossbred). Accuracy in breed assignment of the test population as de-
termined by the number of animals correctly assigned to their breed of
origin using the threshold value for proportion of membership of 0.775
is shown in Table 4. Overall 82.0% (96 out of 117) of the animals in the
test population is correctly assigned to the breed in question. No ani-
mals were assigned to another breed and no animals from the other
breeds (Improved Red Cattle, Lineback Cattle and Belgian Red Cattle)
were assigned to the Dutch local breeds in question. As previously in-
dicated, the Dutch Red and White Friesian cattle is closely related to the
Dutch Friesian breed, as well as Deep Red Cattle is closely related to
Meuse-Rhine-Yssel. For these breeds, if an animal is not correctly as-
signed, but the combined (Meuse-Rhine-Yssel and Deep Red Cattle or
Dutch Red and White Friesian and Dutch Friesian) proportion of
membership is =0.775, the animal can be considered as purebred,
provided that the phenotype, colour and/or pattern and meets the re-
quirements for the breed, as determined by the herdbook. Using this
criteria 88.9% (104 out of 117) of the animals in the test population is
correctly assigned. Of the 34 purebred animals (=87.5%) that are
composed of breeds not in the reference populations (Improved Red
Cattle, Lineback Cattle and Belgian Red Cattle), 33 animals were not
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4. Discussion
Table 3

Average proportion of membership of the animals in the reference population
to the seven clusters. The highest contributions per breed are in boldface.

Breed* Inferred clusters
1 2 3 4 5 6 7 Number of
animals

DRF 0.012 0.227 0.008 0.004 0.731 0.007 0.011 43

DF 0.009 0.935 0.005 0.004 0.023 0.009 0.015 150

GWH  0.009 0.005 0.004 0.959 0.008 0.008 0.007 111

DB 0.042 0.009 0.011 0.007 0.013 0.013 0.907 32

DRC 0.023 0.011 0.044 0.004 0.013 0.894 0.012 36

MRY 0.007 0.004 0.937 0.003 0.005 0.038 0.006 150

HOL 0.949 0.006 0.016 0.006 0.006 0.011 0.006 50

* DRC = Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian,
DRF = Dutch Red and White Friesian, GWH = Groningen White Headed,
MRY = Meuse-Rhine-Yssel and HOL = Holstein Friesian.

assigned as belonging to one of the seven breeds in the reference po-
pulation. One Improved Red Cattle was incorrectly assigned as pure-
bred Deep Red Cattle.

The proportion of membership of crossbred animals should be
below the threshold value of 0.775. In total 73.3% of the crossbred
animals were indeed assigned as admixture (Table 5). Noticeably, al-
most half of the crossbred animals of the Groningen White Headed were
assigned as purebred Groningen White Headed. One Dutch Red and
White Friesian crossbred animal (75% Dutch Red and White Friesian
and 25% unknown) was assigned as purebred (Table 5). It is very
plausible that the unknown breed Dutch Red and White Friesian breed
or Dutch Friesian was.
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In this study we set up a test to determine breed composition and
purity and quality control where pedigree is unknown or unable to
verify with traditional methods.

4.1. Breeds

Six local Dutch cattle breeds were incorporated in the purity test:
Deep Red Cattle, Dutch Belted, Dutch Friesian, Dutch Red and White
Friesian, Groningen White Headed and Meuse-Rhine-Yssel.

Anecdotally and according to breed registry information, the Dutch
Red and White Friesian cattle is closely related to the Dutch Friesian
breed, as well as the Deep Red Cattle is closely related to the Meuse-
Rhine-Yssel. The Dutch Red and White Friesian Cattle originated from
Dutch Friesian. With the increasing demand for black and white pied
animals for export, the red pied Dutch Friesians were no longer allowed
to be registered as Dutch Friesian. However, some farmers kept
breeding with red pied animals and in 1975 the Dutch Red and White
Friesian became an official cattle breed. Both are now registered as one
breed, with an additional notification for colour. Similarly, the Deep
Red Cattle and Meuse-Rhine-Yssel are closely related. These two breeds
have a common history. With the increasing interest in highly pro-
ductive dairy cattle the number of purebred Meuse-Rhine-Yssel de-
creased rapidly. Farmers attempted to improve production in local
cattle breeds through crossing with more productive breeds. In Meuse-
Rhine-Yssel white colouring was preferred because a link of this col-
ouring to milk production was suspected. Farmers opposing these
changes, moved back to the old type of dual-purpose cattle with its
typical deep red coat colour, creating a new line within the breed: Deep
Red Cattle (de Haas et al., 2009). The separation of Deep Red Cattle as
an official studbook was in 2004. This clarifies why the PCA, RF and
STRUCTURE had difficulties to distinguish between these breeds.
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Table 4
Assignment accuracy of the test population.
Breed # purebred # assigned #assigned
(=87.5%) from other
breeds
Purebred Crossbred other breed
(Q-value = 0.775 (Q-value <
0.775)
DRF 5 3 2 0 0
DF 24 19 5 0 0
GWH 25 25 0 0 0
DB 5 4 1 0 0
DRC 4 3 1 0 0
MRY 34 24 10 0 0
HOL 20 18 2 0 0
Total 117 96 21 0 0
DRF + DF* 29 25 4 0 0
MRY + DRC* 38 32 0 0
Total 117 104 13 0 0

* Combined membership proportion.

** DRC=Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian, DRF = Dutch Red and White Friesian, GWH = Groningen White Headed, MRY = Meuse-

Rhine-Yssel and HOL = Holstein Friesian.

*=+ QOther breed(s) = breeds within the reference population: Deep Red Cattle, Dutch Belted, Dutch Friesian, Dutch Red and White Friesian, Groningen White

Headed, Meuse-Rhine-Yssel and HOL = Holstein Friesian.

Table 5
Assignment accuracy of the crossbred animals and animals from other breeds.
Breed®  #crossbred  #correctly assigned crossbred (Q- #assigned
values < 0.775) purebred
DRF 3 2 1
DF 2 2 0
GWH 11 6 5
DB - - -
DRC 2 2 0
MRY 3 2 1
HOL 5 5 0
OTH 4 3 1
Total 30 22 8

* DRC=Deep Red Cattle, DB = Dutch Belted, DF = Dutch Friesian,
DRF = Dutch Red and White Friesian, GWH = Groningen White Headed,
MRY = Meuse-Rhine-Yssel, HOL = Holstein Friesian and OTH = Other Breed:
Improved Red Cattle, Lineback Cattle and Belgian Red Cattle.

4.2. Reference population
The genotype data available for this study was not specifically

gathered to build a reference populations for the purpose to setup a
breed composition and purity test. The genotype data of the different
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breeds used to compose the reference populations originated from dif-
ferent studies (Maurice-Van Eijndhoven et al., 2015; Francois et al.,
2017; Hulsegge et al., 2017; Manzanilla-Pech et al., 2017) and the re-
cently available genotype data from bulls of which semen is stored in
the Dutch national genebank of CGN, born between 1960 and 2015,
suggesting they would include the genetic variation present in the po-
pulation (Berg and Windig, 2017). Cows were selected from several
farms for each breed, suggesting that they represent different families
and thereby relevant variation in the population. The variation present
in a population should be represented by a reference population, to
avoid exclusion of atypical animals or even whole breeding lines or
families (Hulsegge et al., 2013). Dalvit et al. (2008) and Rosenberg
et al. (2001) suggested for real and practical use of breed assignment
methods to verify the suitability of collected samples to be used as a
reference population. For pigs, Funckhouser et al. (2017) indicated that
subpopulations within a breed may differ in allele en haplotype fre-
quencies, highlighting the importance of having a representative re-
ference population that capture the genetic variation existing among
animals to be tested. Our results showed that the animals of the re-
ference population form genetic clusters that correspond to their breed
designations and that these animals can be used in a reference popu-
lation for assignment of future unknowns. We have no indications that
the genetic diversity range of the reference population is too small.
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Another important aspect for a reference population is the minimum
number of animals that would be required to accurately assign an an-
imal to a breed using genotype data (Connolly et al., 2014). The data
used in this study included an unequal number of animals in the breeds
of the reference population. Connolly et al. (2014) indicated that at
least 50 animals are required in a reference population when at-
tempting to discriminate between distantly related breeds, and many
more (400 to 500) if the breeds are closely related. This latter number is
probably difficult to realize in regard to the small population sizes of
most of the Dutch cattle breeds. Frkonja et al. (2012) reported that a
very small number of samples of purebred (ancestral) individuals (10)
is sufficient to provide accurate estimates of admixture. Although the
results showed that the breed assignment of the test population using
the current reference population was successful we propose, based on
the arguments mention above, to add additional animals to the re-
ference population. When adding additional animals to the reference
population one should sample widely from the breed and avoid adding
closely related animals. So, the reference populations could still be
improved on numbers and potentially representation of the total ge-
netic diversity.

4.3. Selection of informative SNPs

Genotyping and analysing a large number of SNPs is costly and
time-consuming. Therefore selecting a subset of SNPs that is sufficiently
informative is an important step toward a breed composition and purity
test. Several methods can be used to determine which SNPs contain the
most information to discriminate between populations (Ding et al.,
2011; Wilkinson et al., 2011; Bertolini et al., 2015). In this study we
used the combination of PCA and RF to perform SNP selection (Bertolini
et al.,, 2015). PCA has been used already in cattle to reduce di-
mensionality of large SNP data sets and to identify breed informative
SNPs (Lewis et al., 2011; Wilkinson et al., 2011; Bertolini et al., 2015).
This pre-filtering PCA step was combined with RF, an approach that can
classify and assign individuals. Bertolini et al. (2018) demonstrated the
usefulness of RF in combination with other SNP reduction techniques to
identify breed informative SNPs and that PCA is the best technique to
combine with RF in order to classify and assign individuals to breeds.
From tests selecting different numbers of informative SNPs (data not
shown) the selection of 1000 informative SNPs through PCA and out of
these 1000 the 100 most informative SNPs found by RF was large en-
ough to distinguished between the Dutch cattle breeds. However, for
the closely related breeds Dutch Red and White Friesian and Dutch
Friesian, as Deep Red Cattle and Meuse-Rhine-Yssel the 100 selected
SNPs were not sufficient. Therefore we added additional SNPs based on
allele frequency between Dutch Red and White Friesian and Dutch
Friesian and between Deep Red Cattle and Meuse-Rhine-Yssel, resulting
in a total of 133 selected SNPs. The closely related breeds Dutch Red
and White Friesian and Dutch Friesian showed overlap in the results of
PCA and RF. This overlap is partial and does not hold for all animals of
the Dutch Red and White Friesian population. Hulsegge et al. (2017)
stated that Dutch Friesian and Dutch Red and White Friesian are closely
related, but that some of the breeding lines in the Dutch Red and White
Friesian population are genetically distinct from each other, from Dutch
Friesian and the other breeds. A similar challenge occurred with the
differentiation between Deep Red Cattle and Meuse-Rhine-Yssel, which
also had a slight overlap between the populations in the PCA and RF
results. This overlap can be traced back to the common history of both
breeds. As well as the fact that there are still some (crossbred) Meuse-
Rhine-Yssel bulls used in the Deep Red Cattle breeding program.

The number of selected informative SNPs depends on the breeds
under consideration in the reference population and their respective
levels of genetic heterogeneity.

The 133 identified SNPs were useful to discriminate among all the
cattle breeds under study. These markers are probably not useful to
discriminate among other cattle breeds or even same breeds but from
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different countries. However, the used strategy can be reproduced to
develop marker sets to discriminate other breeds.

4.4. Breed assignment

Several studies have proven the software of STRUCTURE to be ef-
ficient in assigning animals to their breed of origin (Padilla et al.,
2009); (Rogberg-Muifioz et al., 2014). Although the genealogical purity
of animals used in the reference populations was known based on
pedigree information, we followed the suggestion of Pritchard et al.
(2000) and applied for cattle by Padilla et al. (2009) of assigning ani-
mals. That is, before making use of population information, clustering
the data without using prior population information should be per-
formed, to check that the genetically defined cluster does agree with
population labels. STRUCTURE showed that the reference population
split in seven clusters (K = 7) each corresponding to a breed. The ge-
netically defined clusters agreed with the original breeds. Padilla et al.
(2009) showed that posterior use of population information improved
the accuracy of assigning animals to clusters and the estimates of the
probabilities of membership for each animal in each cluster, giving a
greater precision in the assignment of individuals lacking genealogical
information. Therefore we activated the PopFlag option in STRUCT-
URE. In this way, animals of the reference populations were a priori
assigned to their predefined clusters (PopFlag = 1), while the animals
of the test population (PopFlag = 0) were probabilistically assigned to
breeds without using prior knowledge.

4.5. Assignment testing

The number of animals of some breeds for assignment testing was
very limited, due to lack of more genotype data.

Breed assignment was performed for animals whose listed breed
composition is comprised of one of six local breed in the reference
populations. Animals that were composed of breeds not in the reference
population got predicted as a seemingly random mixture of the re-
ference populations.

Using the threshold value for the proportion of membership of
=0.775 purebred animals from the test population (based on pedigree)
were correctly assigned and crossbreds (again based on pedigree) were
identified. There are no firm guidelines for acceptable false positive and
false negative results. According to Miciak et al. (2015) the criteria can
be ultimately pragmatic, using an optimal balance between false posi-
tives and false negatives. The proportion correctly assigned for the
purebred test animals differed between breeds, with the highest pro-
portion for Groningen White Headed and lowest for Dutch Red and
White Friesian. As mentioned earlier, Meuse-Rhine-Yssel and Deep Red
Cattle breeds separated in the recent past, while for Dutch Friesian and
Dutch Red and White Friesian recent mixing occurred. For these breeds
we suggest that if an animal has a percentage for its own breed <
0.775, but the combined percentage of the two mentioned breeds
(Meuse-Rhine-Yssel and Deep Red Cattle or Dutch Friesian and Dutch
Red and White Friesian) is = 0.775, the animal can be considered as
purebred, provided that the phenotype, colour and/or pattern, meets
the requirements for the breed as determined by the herdbook. How-
ever, for Groningen White Headed almost half of the crossbred animals
were assigned as purebred Groningen White Headed using this
threshold value. The threshold value for this breed may have to be set
differently.

Altogether, in general the animals of the test population were very
well assigned to the correct breed in question, and crossbred animals
and the animals from other breeds were identified as well. This latter is
beneficial in the way that animals which are not actual purebred for
one of the Dutch local cattle breeds, would not be classified as such.
And even though the average proportion of membership differed be-
tween the breeds, the proportion of membership represented an accu-
rate indication about whether or not an animal is purebred.
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5. Conclusion

Although tens of thousands of SNP markers are now available, only
a small set of SNP (n = 133), when accurately chosen, was needed to
differentiate among the Dutch local cattle breeds. The reference po-
pulation of purebred animals showed genetic clusters that corresponded
to their breed designations and its usefulness for assignment of future
unknowns. Although the reference populations could still be improved
on numbers and representation of the total genetic diversity. The breed
assignment of the test population using STRUCTURE software, the
current reference population and the selected SNPs was successful.
Therefore, this test was implemented in practice to identify (partly)
unregistered individuals as being purebred (or not) for one of the Dutch
local cattle breeds.
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